Distributed Biomass Conversion

Petter Heyerdahl and Geoffrey Gilpin Norwegian University of Life Sciences -Institute for Mathematics & Technology

Roger Ruan, Paul Chen, Fei Yu, Kevin Hennessy, Yuanhua Wang, Jianping Wu, Alf Tunheim
Center for Biorefining
Department of Bioproducts and Biosystems Engineering
University of Minnesota

M

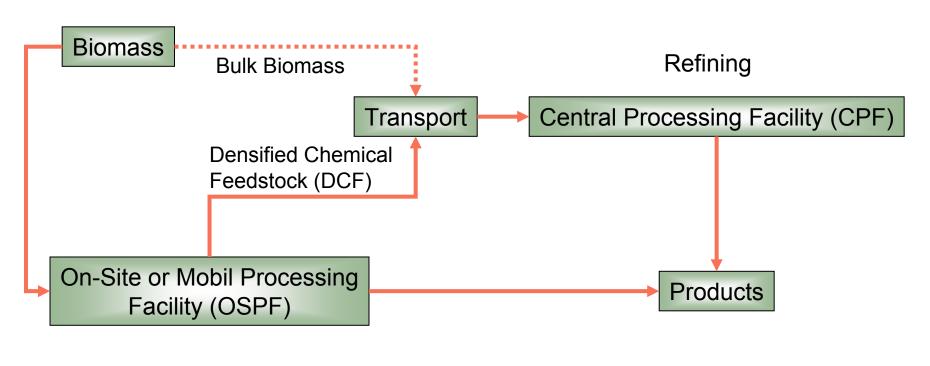
Biomass Conversion

- Direct use of conversion products
 - ☐ Heat and Power
 - Bioethanol
 - □ Syngas
 - □ Bio-oil
- First step in utilization of biomass
 - □ For upgrading
 - □ Feedstock for other processes

re.

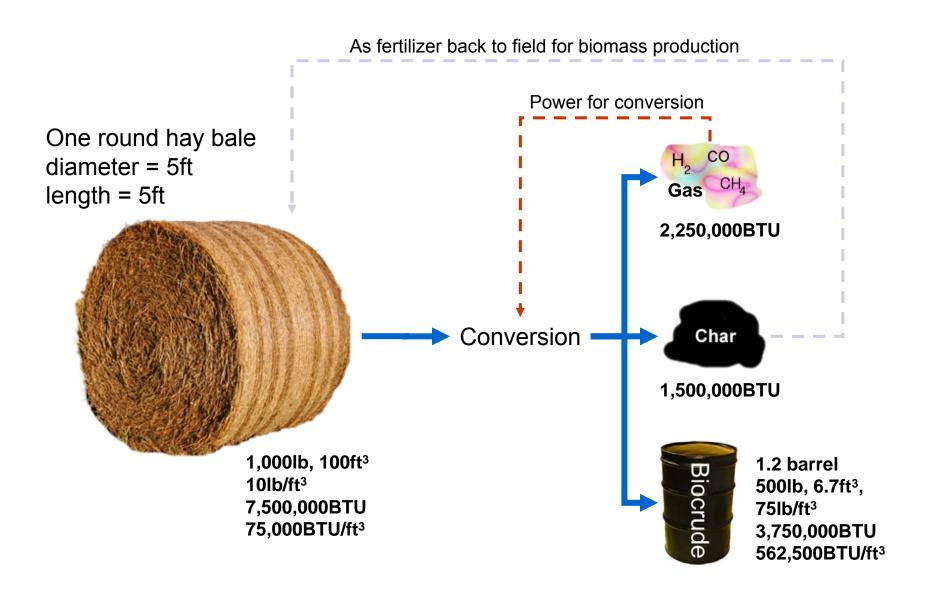
Challenges faced by large processing facilities

Initial Capital Investment


Technicality

Auxiliary Equipment/Facility

Feedstock Transport


ncome for Biomass Producers

Distributed Conversion/Refining System

Fractionation & Conversion

Bale to Barrel

Distributed biomass processing scheme

×

Scalable distributed thermochemical conversion technologies

- Processes
 - Microwave assisted pyrolysis
 - Hydrothermal pyrolysis
 - Liquefaction
- Product possibilities
 - □ Bio-oils
 - Heating oil, transportation fuels
 - Bio-polymers
 - Adhesives
 - □ Syngas
 - Gas turbine to generate electricity
 - Fermentation to produce high value chemicals
 - Reforming to produce fuels

Commercial Scale MWP Reactor

UMB-IMT & X-Waste International

- 4.5 kW power
- computer central controlled process
- 10 kg/h through-put
- various input materials

Pyrolysis Chamber

- air tight hopper system w. 1
 m³ capacity
- horisontal-, cyclindrical reaction chamber
- w. auger transport system
- microwave inlets x 3
- ventilation/under-pressure
- vapour outlet
- dry fraction outet/collection
- w. heating
- inert gas lines
- temperature measurement

Microwave Generators

- 1.5 kW magnetrons x3
- reflection indicator (selectable)
- tuning device x3
- inert gas inlets CO₂,h₂
- vertical microwave guides ca. 5m \$

Condensing Column & Liquid Collection

- 5 fraction distillation column
- 2 x gas scrubbers
- Collection tank for distillate
- w. Heating element
- Dry gas flare

Logging Capabilities

as functions of time

Feedstock

□ Temperature [°C]

Reaction

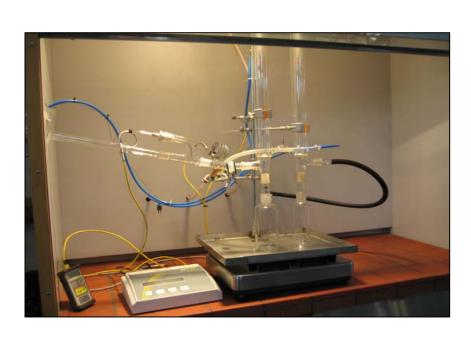
- □ Vapour temp. [°C]
- □ Condensing temp. [°C] x 5 pt.

Power

Emitted and reflected

Laboratory MWP Reactor

- Batch operation
- 1-2 I input material capacity
- near limitless input materials capability
- ≤ 1200 °C
- in-time gas sampling and analysis (06.07)
- Insured safe working environment (microwave, gas leakage)


Reaction Chamber

CEM - Max

- 1.5 kW magnetron
- ≤ 1200 °C
- programmable (start, running, cool-down)
- Aluminum oxide furnace chamber
- silica-carbide arch
- built-in scale (± 0.1 g)
- thermocouple
- computer terminal connections

Condensing Column & Liquid Collection

- 2 x tube-in-tube heat exchangers
- Stage 1 air cooling
- Stage 2 water cooling
- Liquid sample collection
- Scale
- Thermocouple
- Vapour inlet
- Gas outlet (to FTIR)

Logging Capabilities

as functions of time

Feedstock

- □ Weight loss [g & %] (± 0.1 g)
- □ Temperature [°C]

Reaction

- □ Vapour temp. [°C]
- □ Condensing temp. [°C] x 2 pt.

Liquid

□ Weight increase [g] (± 0.1g)

Gas

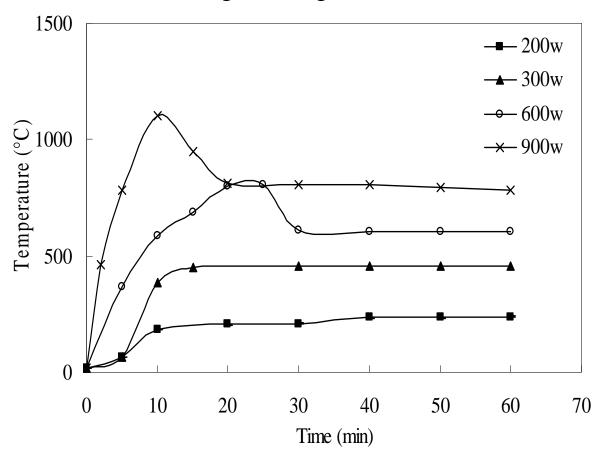
□ Planned; volume flow [l/s]

Objectives

- To understand and optimize the processes
- To explore product possibilities
- To develop pilot scale continuous processes and equipment

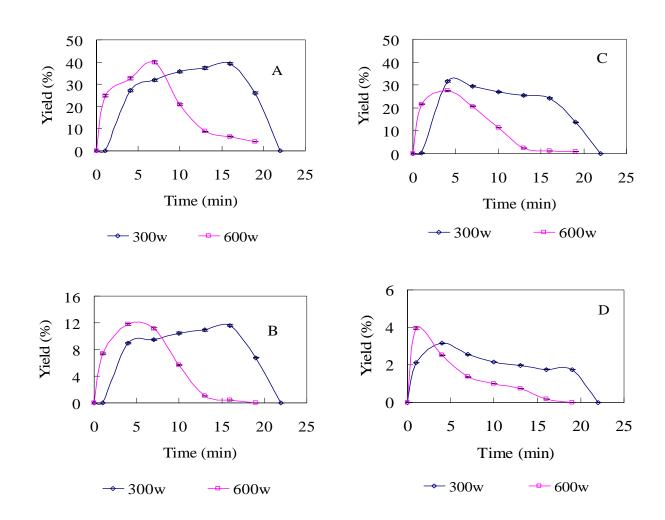
Work accomplished

- Experiments to investigate product yields and properties under different conditions
- Testing different feedstock
- Burning and engine testing of bio-oils
- Development of bio-polymers from bio-oils
- Development of continuous microwave pyrolysis and hydrothermal pyrolysis systems



Microwave-Assisted Biomass Pyrolysis System (UMN Generation II)

w


Microwave Pyrolysis

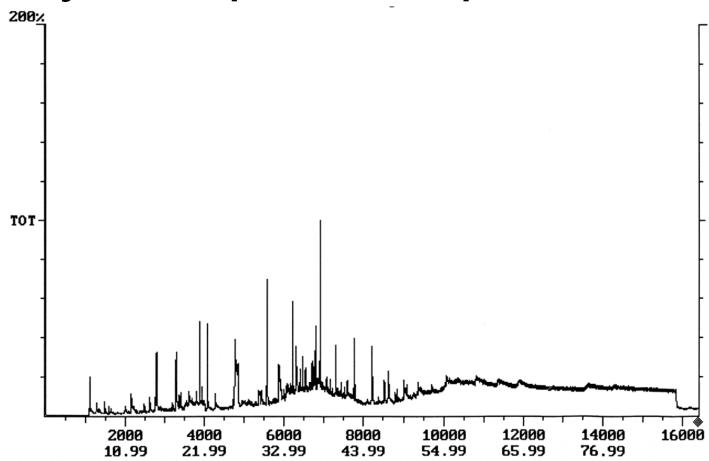
Microwave pyrolysis of corn stover at different input power.

Microwave Pyrolysis of Corncob and Cellulose

	300W		1000W		
	Corncob	Cellulose	Corncob	Cellulose	
Gases (%)	14.36	7.52	46.88	23.64	
Liquid (%)	16.34	13.76 30.16		43.64	
Solids (%)	69.3	79.72	22.96	32.72	

Micro-GC chromatograms of the microwave pyrolysis gas obtained from corn stover at 300W and 600W.

A: H2; B: CH4; C: CO2; and D: CO.


M

Composition of Pyrolytic Gases

Retention time (min) Peak Name		Percentage at 300w	Percentage at 600w		
Peak Info for Channel A (MS5A)					
0.413	<h2></h2>	6.33	17.68		
0.659	0.659 <co></co>		15.32		
Peak Info for Channel B (PPQ)					
0.365	<co2></co2>	39.68	32.58		
0.382	<c2h4></c2h4>	0.28	0.90		
0.390	0.390 Acetylene 0.94 1.15		1.15		
0.408	<ch4></ch4>	3.97 3.76			

M

Pyrolytic Liquid Composition

GC-MS chromatograms of the pyrolysis liquid obtained from corncobs.

Analysis of microwave pyrolytic oils

Analysis	Method		
рН	pH meter		
Water, wt%	ASTM D 1744, Karl-Fischer titration		
Minerals, ppm	ICP		
Viscosity (20 °C), mPa • s	ASTM D 445, Rotational viscometer		
Ash, wt%	EN 7		
Elemental composition, wt%	Elemental analyzer		
Heating value, MJ/kg	DIN 51900, Bomb calorimeter		

М

Physicochemical properties of bio-oils

Properties	Value	
рН	2.87	
Moisture, wt%	15.2	
Density , g/ml	1.25	
Dynamic viscosity at, mPa • s		
20 ℃	1270	
40 ℃	185	
60 ℃	60	
80 °C	34	
Gross heating value (HHV), MJ/ kg	17.51	
Elemental composition, wt%		
Carbon	60.66	
Hydrogen	7.70	
Nitrogen	2.02	
Sulphur	0.15	

Minerals of Bio-oils by Inductive Coupled Plasma (ICP) Analysis

Mineral	Al	В	Ca	Cd	Cr	Cu	Fe	K
Content (ppm)	4.922	2.848	6.833	0.059	0.307	0.397	7.589	3.127
Mineral	Mg	Mn	Na	Ni	Р	Pb	Zn	
Content (ppm)	1.858	0.034	1.816	0.953	1.518	0.822	0.792	

High heating value of bio-oils and bio-oils with solvent addition

Samples	High heating value (MJ/kg)
Bio-oils	17.51
Aqueous phase	1.2
Bio-oils with 10 wt% methanol	16.21
Bio-oils with 20 wt% methanol	15.96
Bio-oils with 30 wt% methanol	13.47
Bio-oils with 10 wt% ethanol	14.51
Bio-oils with 20 wt% ethanol	12.07
Bio-oils with 30 wt% ethanol	11.98

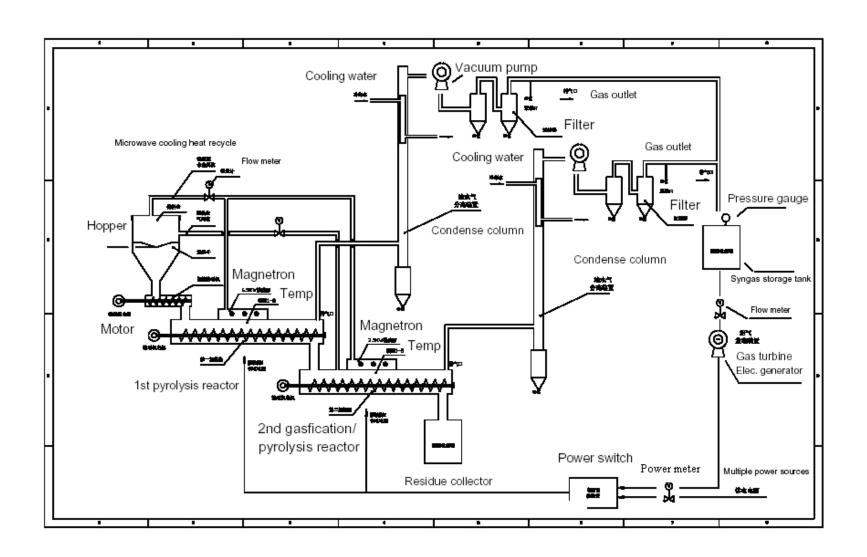
M

Development of Polymeric Products

- Bioadhesives
- Biopolyesters
- Biopolyurathane
- Compressed materials
- Biochemicals

Sample Bioproducts Produced from Biooils

Test of Polyurethane Foams



re.

Generation II Continuous Equipment Development

- Continuous process
- Larger capacity
- Closed-system: gas turbine for electricity generation
- Two-state processes: pyrolysis and gasification
- Completion: estimated in July or August

Schematic Diagram of the Microwave-Assisted Pyrolysis System under Design

Continuous Hydrothermal Biomass Pyrolysis System

