

Madelia Model: Project Update 4.2.2012

Linda Meschke Rural Advantage

Madelia Model: Perennial Feedstocks to Advanced Biofuel

Goal:

DFI

Utilize Local Grown Renewable Energy as a Catalyst for Increasing Perennials on the Landscape to Reduce Pollution from Production Agriculture

Concept

- Uses Renewable Energy & Bio-Industrial Processing as a Catalyst for Sustainable Regional Development
- Utilize perennial feedstocks, at priority sites on the landscape, to mitigate agricultural non point source pollution
- Provides a Market
 - I,000's of acres of perennials
- Creates New Enterprises & Jobs

Results in Multiple Benefits

✓ Water Quality Renewable Energy ✓ Habitat Enhancement ✓ Sustainable **Agriculture** ✓ Vibrant Rural Communities ✓ Retain Rural Wealth

Madelia Fuelshed Prairie Skies Bioenergy Facility

A 25 Mile Radius of Madelia, Minnesota 75% of the Feedstock is expected to come from this Area

Prairie Skies Bio-Energy Project Phase I

- Multiple
 Feedstocks
 Grown Locally
- Perennials Targeted to Priority Sites

Torrefaction

- Produces an Advanced Biofuel
- Similar to Wyoming Coal in BTU's [8,600/lb]

Feedstocks

Torrefaction Facility

Torrefaction is a thermo-chemical treatment of biomass in the 400 – 650 degree F range. In this process the biomass partly [especially the hemicellulose] decomposes, giving off various types of volatiles.

- Construction of a 300 ton/day torrefaction facility at Madelia [co-located next to Tony Downs Foods].
- Benefits of Torrified Material
 - Hygroscopic
 - Densification 80%
 - Reduces Volume
 - Increases Energy Value 30%

Prairie Skies Bio-Energy Project Phase II & III

• Produces:

- Syngas
- Electricity
- Heat/Steam
- Co-Located with a Major Ag Processor

High Pressure Gasifier

Bio-Fuels Refinery

- D-4814 Gasoline
- D-975 Diesel
- Anhydrous Ammonia

Recent Updates:

- Prairie Skies Biomass
 Co-op Formed [9/2010]
- Local Grower Co-op
 15 Members
- Supply the Feedstock and Own the Torrefaction Facility [4/2011]
 - 300 Tons per Day
 - ~\$22 Million Capital Cost
 - ~45 Jobs in Facility
 - ~ 75 Jobs in Feedstock
 Supply Chain

Recent Updates: continued

- Biomass Crop Assistance
 Program [BCAP] Proposal
- Similar to CRP except:
 - 5 Yr Grasses/ 15 Yr Woody
 - Pays Annual Rental Payment
 - Pays Establishment
 - Allows Harvest
- Applied for \$42 Million
- Did Not Receive –
 Needed Feasibility Study
- Re-apply in 2012 ???

Recent Updates: continued

- Awarded an MDA Next Generation Grant
- \$73,000 Grant/ \$73,000 Match
- Deliverables:
 - 3rd Party Feasibility Study
 - Business Plan
 - PSBC Organizational Procedures, Share Development & Feedstock Agreements
- Partners: PSBC, SynGas Technologies, LLC, Cooperative Development Services, Black Dog Co-op Law, Minneapolis Biomass Exchange
- Completed by 6/30/2013

MM Feedstock Supply

Feedstock	% of Supply	Tons	Acres	Yield	
Native Grasses	35 %	38,325	19,162	2 T/A	
Corn Stover	25 %	27,375	13,688	2 T/A	
Alfalfa	10 %	10,950	2,190	5 T/A x 2 cut	
Miscanthus	10 %	10,950	913	12 T/A	
Small Grain Straw	10 %	10,950	5,475	2 T/A	
Short Rotation Willow	10 %	10,950	2,736	12 T/A [3 yr]	
Total	100 %	109,500	44,164		

Harvest Schedule

Prairie Skies Bio-Refinery Feedstock Supply Harvest Schedule

Feedstock	S	0	N	D	J	F	М	Α	М	J	J	Α
Native Grasses											4	C.
Short Rotation Willow												
Wheat Straw												
Alfalfa -Fiber												
Miscanthus												
Corn Stover												

Targeting Acres

Potential Ecological Uplifts:

- Sediment, N & P Reduction
- Water Storage Increased
- Wildlife & Pollinator Habitat
- **Carbon Sequestered**
- GHG Reduced

USDA – NRCS Photo

Targeted to Marginal Lands*

* Compare economics of corn production on *marginal* lands to dedicated energy crop economics.

Less

Production/

Input Costs

Energy

Facility

What are we paying for?

Multiple Feedstocks
 Targeted to Marginal Lands
 Co-Located Next To A Major Agricultural
 Processor
 Supports Rural Economies
 Multiple Benefits
 Water Quality
 Wildlife Habitat
 Less GHG
 New Enterprises & Jobs

The End

Linda Meschke Rural Advantage linda@ruraladvantage.org